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Abstract

An exact dynamics stiffness matrix is developed and subsequently used for free vibration analysis of a twisted beam
whose flexural displacements are coupled in two planes. First the governing differential equations of motion of the
twisted beam undergoing free natural vibration are derived using Hamilton’s principle. Next the general solutions of
these equations are obtained when the oscillatory motion of the beam is harmonic. This is followed by application of
boundary conditions for displacements and forces, which essentially leads to the formation of the dynamics stiffness
matrix of the twisted beam relating harmonically varying forces with harmonically varying displacements at its ends.
The resulting dynamic stiffness matrix is used in connection with the Wittrick—Williams algorithm to compute natural
frequencies and mode shapes of a twisted beam with cantilever end condition. These are compared with previously
published results to confirm the accuracy of the method, and some conclusions are drawn. © 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

The free vibration analysis of twisted beams has aroused continuing research interest during the past half
century. A small, but carefully selected sample of the relevant literature includes the work of Mandelson
and Gendler (1951), Flax and Goland (1951), Rosard (1953), Troesch et al. (1954), Diprima and Hand-
elman (1954), Zickel (1955), Carnegie (1959), Slyper (1962), Anliker and Troesch (1963), Dawson (1968),
Carnegie and Thomas (1972), Lin (1977), Gupta and Rao (1978), Sisto and Chang (1984), Celep and
Turham (1986), Rosen et al. (1987), Rosen (1991), Onipede et al. (1994), Liew and Lim (1994), Liew et al.
(1994, 1995), Balhaddad and Onioede (1998) and Petrov and Geradin (1998). For background studies and
historical development of the research, interested readers are referred to a survey paper by Rosen (1991),
which gives an extensive bibliography on the subject. It is clear that prior to the development of the finite
element method, a number of investigators (Troesch et al., 1954; Diprima and Handelman, 1954) attempted
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the problem of the free vibration analysis of twisted beams by relying on analytical solutions of the gov-
erning differential equations. These solutions yield natural frequencies and mode shapes of a twisted beam
in the usual way by applying boundary conditions for displacements and forces. Despite the limitation that
they focus only on a single structural element, these previous attempts, were and still are, useful contri-
butions to the literature, and were no-doubt very significant at the time. The emergence of the finite element
method has, of course, changed the attitude of many wishing to study this problem and as a result, has
halted analytical developments on the subject. As a consequence, present day investigators are apparently
unmotivated to seek analytical solutions of the type described above. For example, a twisted beam can be
analysed approximately for its vibration characteristics using the finite element method by idealising it as a
series of uniform untwisted beam elements. Each element is appropriately orientated to a set of global axis
system. In this way, a twisted beam can be represented by a number of straight uniform beam elements and
yet sufficiently accurate results can be obtained by increasing the number of elements. The simplicity as well
as versatility of the finite element method has been extended by some investigators who have gone on to
develop the element mass and stiffness matrices of twisted beams (Gupta and Rao, 1978; Sisto and Chang,
1984) and thus have enhanced the model accuracy significantly when compared with the simple idealization
using straight elements. However, such finite element models will still not give exact results because the
displacement function assumed for the twisted beam element is still inexact, with consequent errors in both
stiffness and mass properties of the element.

Against this background it is now becoming progressively better known that there is a powerful alter-
native to the conventional finite element method, wherein the frequency dependent (exact) shape function,
resulting from the solution of the governing differential equations, can be used (Williams and Wittrick,
1983; Williams, 1993; Banerjee, 1997). This is the method of the dynamic stiffness matrix, which has all the
essential features of the finite element method and at the same time provides exact solutions to structural
vibration problems. The method is undoubtedly superior to the traditional finite element method, partic-
ularly when higher natural frequencies and better accuracy of results are required. At present the range of
applications of the dynamic stiffness method is somewhat limited to beams and a few restricted plate ele-
ments (Williams and Wittrick, 1983; Williams, 1993). Nevertheless this range is quite substantial. The
method relies on only one single frequency dependent matrix called the dynamic stiffness matrix, which is
obtained from the exact analytical solution of the governing differential equations of motion of the element
undergoing free natural vibration. Once the initial assumptions on the displacement field have been made,
the resulting differential equations are solved exactly and no further approximation is introduced. Thus the
resulting element matrix features exactly the mass and stiffness properties of the element. The method of the
dynamic stiffness matrix is well established and there are well-known software packages available (An-
derson and Williams, 1987; Williams et al., 1991) based on the method. The element dynamic stiffness
matrices in a structure can be assembled in a similar manner to that of the finite element method except that
only one overall dynamic stiffness matrix is obtained (instead of separate mass and stiffness matrices) for the
complete structure. It should be noted that when dealing with free vibration problems, the dynamic stiffness
method leads to a transcendental eigenvalue problem generally solved using the Wittrick—Williams algo-
rithm (Wittrick and Williams, 1971) whereas the finite element method usually leads to a linear eigenvalue
problem. It is also significant that the accuracy of results using the finite element method depends on the
number of elements used whereas the dynamic stiffness method has no such limitation because it accounts
for an infinite number of natural frequencies of a vibrating structure and thus the results are independent of
the number of elements used in the analysis. For instance, one single dynamic stiffness structural element
can be used to determine any number of natural frequencies of the element to any desired accuracy. This is,
of course, impossible in traditional finite element method.

Of particular interest in this work, is the development of an exact dynamic stiffness matrix for a twisted
beam, and then to use it for the subsequent study of its free vibration characteristics. The dynamic stiffness
formulation of a twisted beam is significantly more difficult than that of a Bernoulli-Euler beam because
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coupling between bending displacements in the two principal planes of bending occurs as a result of the
twist. Starting from the fundamental assumptions of allowable displacements of the twisted beam, the
kinetic and potential energy expressions are derived to formulate the Lagrangian. Hamilton’s principle is
then applied to derive the governing differential equations. As a by-product of the Hamiltonian formulation
the natural boundary conditions lead to the expressions for the shear force and bending moment of the
twisted beam. By assuming harmonic oscillation the governing differential equations are solved. Next the
boundary conditions for bending displacement, bending rotation, shear force and bending moment are
imposed in both planes and the arbitrary constants are eliminated from the general solution. This essen-
tially recasts the ensuing equations in the form of a dynamic stiffness matrix of the twisted beam element,
relating amplitudes of harmonically varying forces with amplitudes of harmonically varying displacements
at its ends. Finally the resulting dynamic stiffness matrix is applied using the Wittrick—Williams algorithm
(Wittrick and Williams, 1971) to obtain natural frequencies of a carefully chosen example. The results are
compared with published results and some conclusions are drawn.

2. Theory

Fig. 1 shows the notation used for a twisted beam of length L in a right-handed Cartesian coordinate
system. The global coordinate axes XYZ are shown at the left-hand end of the beam whereas the local
coordinate axes xyz (in lower cases) which vary along the length, as a result of the twist, are shown on the
right-hand side. The local y and global Y axes are coincident, both passing through the centroid, and are
perpendicular to the beam cross-section, and therefore, represent the axis of twist of the beam. The rate of
twist k is assumed to be constant along the length. Thus, if the twist is zero at the left-hand end, and ¢ (in
radian) at the right-hand end, then k = ¢/L. The two principal second moment of areas of the beam cross-
section are taken to be Iyy and Iz, respectively.

The derivation of the governing (partial) differential equations of motion of the twisted beam (see Fig. 1)
undergoing free natural vibration is of some considerable complexity. This is achieved by applying
Hamilton’s principle (see Appendix A for details). The resulting differential equations are given by

ElL;(u"" + 2kw" — 2k*u" — 20w + k*u) + 2kELyy (W" — 2ku” — I*W) + mit = 0 (1)

Elyy (W' — 2k — 21w + 25U + k*w) — 2kEL; (u"” + 2kw'” — KPu') + miv = 0 (2)

where u and w are displacements in the x and z directions of a point lying on the centroidal axis and located
at a distance y from the origin, m is the mass per unit length, E is the Young’s modulus of the beam material
so that Elyy and El; are the bending rigidities in the YZ and XZ planes, and a prime and an over dot
represent differentiation with respect to distance y and time ¢, respectively.

Fig. 1. Axis system and notation used for a twisted beam.
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Egs. (1) and (2) can also be written as
ElLu"" — 2k*(Ely; + 2ELy )u" + k*Elzzu + 2k(Elxy + Elz)W" — 2k* (Elyy + El)W + mii = 0 (3)
and
ELgew"" — 2k*(ELyy + 2EL W' + K*ELoyw — 2k(Ely 4 EL )W + 2k (Elyy + El)u +miv =0 (4)

If harmonic variation of u and w with circular (angular) frequency w is assumed then

u(y, 1) = U(y)e”
Wi, 0) = W(y)e } G)

Substituting Eq. (5) into Egs. (3) and (4) gives
El;;U"" — 2k*(Elzz + 2ELyy ) U" + K*El;zU + 2k(Elxy + Elzz)W" — 2k (Elyx + Elzz)W' — mo*U = 0
(6)

and

ELpyW"" — 2k*(Elxy + 2EL;)W" + k*ELyy W — 2k(Elxy + Elz;)U" + 2k* (ELyx + Elzz)U' — ma* W =0

(7)
Introducing the non-dimensional variable & (in place of y) where
¢
=yk=y— 8
E=)k=y, (8)

Egs. (6) and (7) can be combined into one differential equation by eliminating either U or W to obtain
after simplification

DY +4D°% + (6 —a — b)D*'¥ + {4+ 6(a+b)}D*¥Y + (1 —a)(1 —b)¥ =0 9)
where
Y=Uo W (10)
-2 (1)
and
me*  moL?

a=—=—
Elyyk*  Ely¢*

mw* mol

b=——"=—— 13
Elzzk* E]ZZ¢4 (13)

The differential equation (9) is linear with constant coefficients so that the solution for ¥ (and hence for
U and W) can be sought in the form

P =e* (14)
Substituting Eq. (14) into Eq. (9) yields the auxiliary (or characteristic) equation
Bral +(6—a—b) +{4+6(a+b)}2P+(1—a)(l—b)=0 (15)

The eighth order polynomial in 4 above, can be reduced to a quartic as follows
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w4 + (6 —a—b)t + (4+6a+6b)u+ (1 —a)(l—b)=0 (16)
where
p=2r or i=+yu (17)

The roots of u (and hence of 1) can now be obtained by using standard procedure (Press et al., 1986), for
example, by factorizing the quartic of Eq. (16) into two quadratics. Note that the roots of u (or 1) can be
real or complex depending on the coefficients of the quartic.

Thus the solutions for U and W can be written as

8
=) A = A1+ Are" 4 436"+ Age™ + Ase’t + A’ + A€V + A (18)
j=1
and
8 2z g a g £ £ M 4 » M
W(E) = Bje"" = Bie""" 4 Bye™ + B3e" + Bye™ + Bse’* + B + Bye”’* + By’ (19)
j=1

where ; (j =1,2,...,8) are the eight roots of the auxiliary equation (15) and 4; and B; are two different
sets of constants.

It can be shown by substituting Eqs. (18) and (19) into Eqgs. (6) and (7) that the constants 4; and B; are
related as follows

Bj = 0d; (20a)
where
{20202+ 0-0))
a. =
C2{+E - (1))

With the help of Egs. (18), (19), (20a) and (20b), the bending rotations 0, and 0y about the x and z axis
are now respectively, given by (see Appendix A for the expressions of 0y and 0y )

(20b)

_dw ¢ _¢dw ¢ o _ Zg i 28: ié
_dUu ¢ ¢ dU ¢ B , B e P
O =g~ W) = —F qe W& = kU kW = —k ; A e k; e (22)

The expressions for shear force and bending moment in the local axis system are given by (see Appendix A)

Sy = El K [U" + 2 +r)W' — (1 421\ U — W]

i SAeh 4+ (24 7) Zoc//lee‘fg 1+ 2r) i Aef“—rZoc,Ae“
= = =

J J=1

= El Kk

8
= Elk Z { + (242 — (1424 - roc_i}A_ie%fi (23)



6708 J.R. Banerjee | International Journal of Solids and Structures 38 (2001) 6703-6722

Sy = ElK*[rW" — 2r + WU" — 2 +r)W' + U]

8 8 8 8
= Elk* | il de — (1+20) Y 224 — (2+1) > aydi e+ 4 ,eifcf}
J=1 Jj=1 j=1 j=1
8 v
= 1KY {roc_,-/lj. — (142072 = (24 oy + 1}A et (24)
Jj=1
and
8 ) 8 o 8 L
My = —Elyk*(W" = 2U' — W) = —Elyxk* [Z AR =2 ddett = ochje"Q]
j=1 Jj=8 Jj=1
8 1z
= *EIXsz Z(aj/lf — 2/’{1 — O(j)AjeMg (25)
8
My = Elk*(U" +2W' — U) = Elk* Z KAt + 22%2]/1 e — ZA e’ f]
j=1 j=1 Jj=1
8 P
= Elzk® Y (3] + 20 — 1)4,e™ (26)
j=1
where
EL
_ bl (27)
El

The dynamic stiffness matrix of the twisted beam can now be obtained by applying the boundary condition
for displacements and forces at its ends.
The boundary conditions for the bending displacement and bending rotation are: at the left-hand end

y:0(§:0) U:Ul, W:VI/], GUZGUH 0W:0Wl (28)
at the right-hand end
y:L(é:(b:kL) U:Uz, W:VVQ, QUZHUZ, QW:0W2 (29)
The boundary conditions for the shear force and bending moment are: at the left-hand end
y=0(§:0) SU:SUU SW:SWH ]‘4[]2]‘4[]17 MW:MWI (30)
at the right-hand end
y:0(§:q§:kL) Sy = =Su,, Sw=—S8m, My =—My,, My =—My, (31)
Substituting Egs. (28) and (29) into Egs. (18) and (19), Egs. (21) and (22) respectively gives

= 28:14/‘ (32)

j=1

8
=, (33)
=1
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8 8
HUI = QU(O) = kz ajAj/Ij — kZA/
j=1 j=1

8 8
O = 0w (0) = —k > Ay — kY od;
o =

and

8
Uy =U(¢p) =) A"
Jj=1

8
Wo=W(p)=> odeh?
=1

8 8
HUZ = QU(d)) = kz (Zj/{jAje/l/d) — kZAje;Ljd)
Jj=1 j=1

8 8
O, = Ow(§) = —k Y 4idje™® — kY od,e?
= =

Eqgs. (32) and (39) can be written in matrix form as follows

or

Ry

Ri»

Ri3

Ry
Ry,
R3y

Ris
Rys
Rss
Rys
Rss
Res
R3s
Rss

Rie
R
R3¢
Rye
Rsg
Res
Ris
Rse

Ry

Rig

where the elements of R (forj =1,2,3,...,8) are given by

le :l
Ry =0,
Ry = —

R4j = —kO(] - k)uj

R5j :ei/d)

_ 4
R6j = OCje /

k + ko2,
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R’]j == kofj/ljeild) - ke)’jd)

Rg/ = —k/ﬂbje;hjd) — kij'e;vjqb

Substituting Egs. (30) and (31) into Egs. (23)—(26) gives
8
Su, = Su(0) = EL Y { + Q24 — (1+20))y mj}Aj

=1

8
SWI :SW EIZZ Z{V(Xj)} +2]’)if—(2+1”)0(jij+1}141

8
My, = My(0) = —ELyk® > (o] — 22 — ;) 4;

Jj=1

8
My, = My (0) = Elzk> > (7 + 2040 — 1)4;

=1
and

8
Su, = Su(¢) = —Elk> Z {}/3 + 2+ — (142r)4 — roc(,}A(,-e"'f‘/’

=1
8
Sus = Sw($) = —Elzk> S {m,-zj. — (14 2)72 = 2+ )iy + 1}A_,.eﬂ~,¢
=1

8
My, = My() = ELuck® Y (025 — 245 — 9;)d e

J=1

8
My, = My (¢) = —Elzzk> > (7 + 20, — 1)4,e"

J=1

Egs. (50)—(57) can be written in matrix form as follows

Su, On QOn QOn Ou 0Ois O O Qi |4
Sm O On On Ou O 0O 0On Ox||4
My, O On O Ou O 0O Oy Ok | |4
My, | _ | On Oun QOn Qu Qi Ow Ox O | |44
Su, Osi O Oss Oss Oss Ose Os1 Oss | | 4s
S, Ot Os2 O3 Oss Oss O Qo1 Oes | | 46
My, On On On O 0O Ow On On| |4
My, 1 Os1 O Oss Osa Oss Oss Us7 Oss | | 4s

or

where the elements of Q (forj=1,2,...,8) are given by

(51)

(52)

(58)
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0y, = EI ¢ 2 24 )t — (142r)4, (60)
1= ZZF - r)o r — 1o
=EI ¢ B (14202 = (2 Ji+1 61
sz— ZZF }"O{jvj*( + V) vj—( +I")aj j+ ( )
o
0 = —ElLee 17 (jdy —24; — o) (62)
=EI ¢ 724+ 200 —1 63
Oy = Zzﬁ(»j+ aidy— 1) (63)
— _EI { T2+ - — ro, bet?
= e r ocJ/L (1+2r)4; —ro; (64)
—EL, Y {mjf (142022 = 2+ )y + 1}e"""’ (65)
P, )
Q7j = EIXXE (ij/lj — 2}./ — O(/)e/‘/qj (66)
O, EIZZ ¢’ ()2 + 20,2 — 1)eh? (67)

The constant vector A can now be eliminated from Egs. (41) and (59) to give

F=QR'6=Ko (68)
where
K =QOR™' (69)

is the required dynamic stiffness matrix.

When computing the dynamic stiffness matrix K, it should be noted that the roots of u and hence for 4,
see Egs. (15)—(17), can be complex and as a consequence, the elements of matrices Q and R can be complex.
Therefore, the matrix inversion and multiplication steps of Eq. (69) must be carried out using complex
arithmetic. The resulting dynamic stiffness matrix K will, of course, be symmetric and real, with imaginary
parts of each element being zero.

Thus the force displacement relationship at the nodes of the harmonically vibrating twisted beam is
given by

Sy, Ky K K Ky Kis Kig Kip Kig U
Sm Ky Ky Ky Ky Ky Ky Ky m
My, Kyw Ky Kss Kz Kz Ksg | | Oy
My, | _ Ku Kis Kis K Kus | | Ows (70)
Su, Kss Kss Ks7 Ksg U,
S, S Y M K¢ Kg7 Keg W,
My, K7 K| | Oy,
LMy, | L Kss | [ Ow, |

It is now necessary to transform the above relationship to global coordinates using an appropriate
transformation. Clearly the displacements and forces at the left-hand end of the twisted beam are already in
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Fig. 2. Shear forces and bending moments at the ends of the twisted beam element shown in local and global coordinates.

global coordinates, whereas the corresponding displacements and forces at the right-hand end are in local
coordinates (see Figs. 1 and 2).

Referring to Fig. 2, the shear forces and bending moments at the right-hand of the element can be re-
solved from global to local coordinates as follows:

Su, = Sy, cos ¢ — Sz, sin ¢ (71)
Sw, = Sx, sin ¢ + Sz, cos ¢ (72)
My, = My, cos ¢ — Mgz, sin ¢ (73)
My, = My, sin ¢ + Mz, cos ¢ (74)

Thus the relationships for the shear force and bending moment between the global and local coordinates at
both ends of the beam element can be expressed as

N 1 0000 0 O0 O Sy,
Sm 01 00O O O O Sz,
My, 00100 O O O My,
My | OO0 0O 1 0 0 0 O My, (75)
S, | [0 00 0 ¢ —s 0 0 Sy,
Sw, 0000 s ¢ 0 O Sz,
My, 00000 0 ¢ —s||My
| My, | 100 000 0 s ¢ ||My]
where
¢ =cos¢ (76)
and
s =sin¢ (77)

The displacements can be transformed from the global to local coordinates exactly in the same way as the
forces by making use of the above transformation matrix 7, given by
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10000 0 0 0
01000 0 0 0
00100 0 0 0
00010 0 0 0
=10 000 ¢ —s 0 0 (78)
0000s ¢ 0 0
00000 0 ¢ —s
00000 0 s c|

In this way the stiffness matrix of the twisted beam in global coordinates K can now be formulated as
K =T'KT (79)

where 7" denotes the transpose of the transformation matrix 7.

3. Application of the Wittrick—Williams algorithm

The dynamic stiffness matrix of Eq. (79) can now be used to compute the natural frequencies and mode
shapes of twisted beams with various end conditions. A non-uniform twisted beam can also be analysed for
its free vibration characteristics by idealizing it as an assemblage of many uniform twisted beams. An
accurate and reliable method of calculating the natural frequencies and mode shapes of a structure using
the dynamic stiffness method is to apply the well-known algorithm of Wittrick and Williams (1971) which
has featured in numerous papers (Williams and Wittrick, 1983; Williams, 1993). Before applying the al-
gorithm the dynamic stiffness matrices of all individual elements in a structure are to be assembled to form
the overall dynamic stiffness matrix K, of the final (complete) structure, which may, of course, consist of a
single element. The algorithm monitors the Sturm sequence condition of K, in such a way that there is no
possibility of missing a frequency (or mode) of the structure. This is, of course, not possible in the con-
ventional finite element method. The algorithm (unlike its proof) is very simple to use. However, the
procedure is briefly summarized as follows.

Suppose that o denotes the circular (or angular) frequency of a vibrating structure. Then according to
the Wittrick—Williams algorithm (Wittrick and Williams, 1971), j, the number of natural frequencies
passed, as  is increased from zero to w*, is given by

J=Jo+s{K} (80)

where K, the overall dynamic stiffness matrix of the final structure whose elements all depend on w, is
evaluated at o = o*; s{K,} is the number of negative elements on the leading diagonal of K¢, Kjf'. is the
upper triangular matrix obtained by applying the usual form of Gauss elimination to K,, and jj is the
number of natural frequencies of the structure still lying between w = 0 and w = »* when the displacement
components to which K, corresponds are all zeros. (Note that the structure can still have natural fre-
quencies when all its nodes are clamped, because exact member equations allow each individual member to
displace between nodes with an infinite number of degrees of freedom, and hence infinite number of natural
frequencies between nodes.) Thus

Jo :ij (81)

where j,, is the number of natural frequencies between w = 0 and w = w* for a component member with its
ends fully clamped, while the summation extends over all members of the structure. For the element dy-
namic stiffness matrix developed in this paper, the clamped-clamped natural frequencies of an individual
member are given by A = 0, where A is the determinant of the matrix Q of Eq. (58) or Eq. (59). Thus, with
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the knowledge of Egs. (80) and (81), it is possible to ascertain how many natural frequencies of a structure
lie below an arbitrarily chosen trial frequency. This simple feature of the algorithm (coupled with the fact
that successive trial frequencies can be chosen by the user to bracket a natural frequency) can be used to
converge on any required natural frequency to any desired (or specified) accuracy.

4. Scope and limitations of the theory

The twisted beam considered in this paper is assumed to behave according to the Bernoulli-Euler theory
in which the cross-sectional dimensions are assumed to be small compared to the length, and thus the effects
of shear deformation and rotatory inertia are ignored. Also the beam has a constant rate of twist along its
length and is assumed to exhibit coupling between bending displacements only. These displacements are
considered to be uncoupled with torsional and/or extensional deformations. Also the cross-section of the
beam is not allowed to warp. These assumptions are quite legitimate for many twisted beams with doubly
symmetric cross-section, but they can be severe for many other (practical) twisted beams such as helicopter
or turbine blades for which coupling between bending, torsional and extensional deformations and the
rotational speed can have significant effects. The dynamic stiffness development of such complex twisted
beams involves much more difficulty requiring additional insights. The theory presented in this paper is an
essential prerequisite to study such problems, and is expected to pave the way for further research on
dynamic stiffness developments of structural elements to a point where they can be applied directly to a
wide range of problems in a design environment.

5. Results and discussion

The theory developed in this paper is applied to a cantilever blade taken from the literature (Rosen et al.,
1987). For comparison of results, this particular reference was chosen because it uses a mathematical
discretization approach based on principal as well as non-physical coordinates when investigating the free
vibration characteristics of twisted beams. This approach gives more accurate results than the ones gen-
erally obtained from the conventional finite element method and thus provides an excellent basis for a
direct comparison with the dynamic stiffness method. The angle of twist of the example blade is zero at the
root and 40° at the root so that ¢ =2n/9 radian. The structural and other properties used are: (i)
Elyy = 2869.7 Nm?, (ii) EI;; = 57393.0 Nm?, (iii) m = 34.47 kg/m and (iv) L = 3.048 m. (Note that the mass
per unit length m given on page 550 of the paper by Rosen et al. (1987) is 0.3447 kg/m, instead of 34.47 kg/m.
This is surely a typographical error as evident from the corresponding value given in imperial unit in the
paper.)

The first five natural frequencies of the blade obtained from the present theory are shown in Table 1
alongside the 20-segment results of Rosen et al. (1987) (see their Table 6 showing Mode A results). The

Table 1
Natural frequencies of a twisted blade with cantilever end condition
Frequency number Natural frequency (rad/s)
Present theory Rosen et al. (1987)
1 3.47173 3.47257
2 13.3465 13.2740
3 25.1707 25.2700
4 56.3716 56.3009
5 103.263 103.200
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@5=103.26 rad/s /\\_........

®3=25.167 rad/s

0
©,=13.342 rad/s
0 .
®1=3.472 rad/s
0
0 0.2 04 & 06 0.8 1

Fig. 3. The first five natural frequencies and mode shapes of a twisted blade. (—) Bending displacement in the YZ plane; (- - -) bending
displacement in the XY plane.

agreement between the two sets of results is very good as can be seen. The corresponding mode shapes of
the blade when using the present theory are shown in Fig. 3. These are also in good agreement with the
mode shapes presented (partly in graphical and partly in tabular form) by Rosen et al. (1987). (Note that
the opposite signs for the displacements in the XY plane are due to the differences in the notation and axis
system chosen.) Clearly the mode shapes indicate very strong coupling between the displacements in two
planes (i.e. the XY and YZ planes). The coupling is of course, induced by the pre-twist.

In order to achieve the same accuracy of results as given by the present theory, but by using the simple
(untwisted) Bernoulli-Euler beam theory instead, it became very clear that a large number of uniform
straight elements (with an appropriate orientation of each) are required. For instance, in order to obtain the
six-figure accuracy in natural frequencies quoted in Table 1, it has been confirmed with the help of an
established computer program called BUNVIS-RG (Anderson et al., 1986, 1987) that around 150 uniform
straight elements are necessary to achieve the same results. Further investigation has shown that the ap-
proximate results using uniform straight elements converge almost parabolically with increasing number of
elements. The results for the illustrative example using 10 and 20 elements and their parabolic limit are
shown in Table 2. Clearly the parabolic limit is a very close approximation to the exact dynamic stiffness
results shown in Table 1. This accords with an earlier investigation carried out by the author in the context
of a rotating beam (Banerjee, 2000).
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Table 2
Natural frequencies of the example twisted blade (Rosen et al., 1987) using straight untwisted beam elements
Frequency number Natural frequency (rad/s)
10 elements 20 elements Parabolic limit
1 3.47151 3.47177 3.47186
2 13.3822 13.3516 13.3414
3 25.0275 25.1318 25.1666
4 56.4517 56.3887 56.3677
5 103.098 103.227 103.270

Following the above analysis, a further study was undertaken to examine the effect of pre-twist on the
natural frequencies and mode shapes of the blade. Thus, the original 40° pre-twist of the blade was altered
by subsequently reducing it to 30°, 15°, and eventually to zero degree, without altering the rest of the data.
The first five natural frequencies and mode shapes for these three cases are shown in Fig. 4. Note that the
present theory does not allow the pre-twist to be set to exactly zero, but a small number, say, 107 can be
safely used. This practically enables the present theory to converge back to Bernoulli-Euler theory giving

¢=30° =15° ¢=0°
- 00'?{\': ©5=97.86 rad/s s ©5=96.78 rad/s .
o~~~ o= : of= o
‘. S hY K N ’
. X . b ’,. . s
\ . N L. Nelae”
‘\‘ ’I' e b
©4=59.89 rad/s ©,=60.59 rad/s
o g
off—= 1 0 ’ 0

©3=21.64 rad/s

(o] St - (1] SZARTL AR Wb 0
©3=23.84 rad/s ©5=22.27 rad/s
©,=14.06 rad/s "’ ©,=15.01 rad/s ,.** 0,=15.44 rad/’s',-'
Y R e ) S _A P T
®4=3.464 rad/s ®4=3.456 rad/s ©,=3.453 rad/s
(0] I YT L 0 0
0 o5 £ 1 0 os & 1 o 05 & 1

Fig. 4. The effect of pre-twist on the natural frequencies and mode shapes of a twisted beam. (—) Bending displacement in the YZ
plane; (- - -) bending displacement in the XY plane.
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uncoupled natural frequencies and mode shapes in the two planes. It is evident from Fig. 4 that the pre-
twist has a relatively minor effect on the natural frequencies, but has a much more pronounced effect on the
mode shapes of the twisted blade.

6. Conclusions

Using Hamilton’s principle the governing differential equations of motion of a twisted beam undergoing
free natural vibration are derived and subsequently used to develop the dynamic stiffness matrix. The
application of the dynamic stiffness matrix is demonstrated by numerical results that were obtained by
using the Wittrick—Williams algorithm. The natural frequencies and mode shapes of an example (cantilever)
blade with substantial twist have shown good agreement with published results. The effect of twist on
natural frequencies and mode shapes has been further investigated. The results show that the twist has a
more pronounced effect on mode shapes than on natural frequencies. It has been shown that when ide-
alizing a twisted beam by using a number of untwisted beams, the parabolic limit gives an accurate estimate
of exact results. The research presented in this paper can be used as an aid to validate the finite element and
other approximate methods, and is expected to stimulate further research on the dynamic stiffness devel-
opment of complex structural elements.

Appendix A
Derivation of the governing differential equations of motion of a twisted beam

The Hamiltonian mechanics is developed to derive the governing differential equations of motion of a
twisted beam, having a uniform rate of twist and undergoing free natural vibration according to the
Bernoulli-Euler beam theory. A set of allowable displacements and rotations is used as the starting point to
form the system of direct and shearing strains. The expressions for strain energy and kinetic energy are then
derived and subsequently used when applying Hamilton’s principle.

In Fig. Al, O(X,Y,Z) is an inertial frame, with OY along the line of centroids of the undeflected
beam cross-sections. Let G be the centroid at ¥ = y, and Gx and Gz principal axes in bending of the cross-
section. The two-dimensional axis system in the plane of the cross-section represented by G(x,z) have a
right-handed rotation ¢ about OY, so that the angle between Gx and OX (and also between Gz and OZ) is

Y

Fig. Al. Displacements and rotations of the centroid G at a distance y from the origin of the twisted beam shown in local coordinates.
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Fig. A2. Displacements of the centroids G and G at the left- and right-hand ends of an elemental length dy of the twisted beam shown
in local coordinates.

¢ as shown. This is the angle of twist at y so that the rate of twist k (which is assumed to be constant)
is d¢p/dy.

Let the local displacements be u along Gx and w along Gz, and 0, and 0, be the rotations about the
x- and z-axis respectively. Now consider an adjacent section at ¥ = y + dy, and let G(x, 7) be the corre-
sponding axis system, see Fig. A2. Allowing for the relative rotation d¢ = kdy of the element dy, the
relative displacements of G with respect to G, along Gx and Gz are respectively given by

Ax = (u+u'dy) cosdp + (w+w'dy) sindp —u (A1)
and

Az = (w+wdy) cosdp — (u+u'dy) sindp —w (A.2)
To the first order, these are

Ax = (u' + kw)dy (A.3)
and,

Az = (W — ku)dy (A4)
The rotations 0, and 0. of the cross-section about Gx and Gz are then respectively, given by

0, =w —ku (A.5)
and

0., =—u —kw (A.6)

A point P at (x,y,z) in the cross-section has displacement (u, v, w) along Gx, Gy, Gz where displacement in
the Y-direction, V, is
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V = 20, +x0), (A7)
Substituting Egs. (A.5) and (A.6) into Eq. (A.7) gives
V = —z(W — ku) — x(u' + kw) (A.8)

To determine the strain components, it is convenient to refer these local displacements to the inertial frame
O(X,Y,Z). Tt can be shown with the help of Fig. Al that

x=Xcos¢ —Zsing (A9)
z=Xsin¢ + Zcos¢ (A.10)
and
U=ucos¢+wsing¢ (A.11)
W = —usin ¢ + wcos ¢ (A.12)
Substituting Egs. (A.9) and (A.10) into Eq. (A.7) gives
V=—(Xsing+Zcos¢)(w —ku) — (X cosp — Zsin ¢) (u' + kw) (A.13)
The shear strains v,, and y,, are respectively, given by
oy n ouU
=y Ty
= —sing(w — ku) —cos (' + kw) +u' cos ¢ — kusin ¢ +w'sin ¢ + kwcos ¢ =0 (A.14)
and
v N ow
=57 8y
= —cos¢(w — ku) + sin ¢ (u' + kw) — ' sin ¢ — kucos ¢ +w' cos ¢ — kwsin ¢ = 0 (A.15)

The shearing strains y,, and y,, shown by Egs. (A.14) and (A.15) are zeros as expected because of the
assumption made in the Bernoulli-Euler beam theory.

The direct strain ¢, is obtained by the differentiating the expression for V' in Eq. (A.13) with respect to y
to give

o

& = %

= —(Xcos¢ — Zsinp)k(w — ku) — (Xsin¢ + Zcos ) (W — ku') + (X sin ¢ + Zcos §) (v + kw)k
— (X cos¢ —Zsing) (u" + kw') (A.16)

Eq. (A.16) with the help of Egs. (A.9) and (A.10) becomes

& = —x(u" 4+ 2kw' — KPu) — z(W' — 2ku’ — k°w) (A.17)
Clearly

ex =& =7y =0 (A.18)

Thus the only non-zero strain is &,.
The strain energy % of the twisted beam in bending can now be expressed with the help of Eq. (A.17) as
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L L L
U = % / / siEdAdy = %EIXX/ (W' — 2k’ — K*w)*dy + %EIZZ / (u" + 2k — kzu)zdy (A.19)
0 Ja 0 0

where Iyy and I;; are the principal second moment of areas of the beam cross-section about the X and
Z axes and are respectively given by

Loy = / 2d4 (A.20)
4
and
[ZZ = /xsz (AZI)
A
The kinetic energy 7 of the twisted beam can be expressed as
1 L
7 =5 / m(i* +Ww*)dy (A.22)
0

Hamilton’s principle states that J fff(f — ) dt taken between arbitrary intervals of time # and #, is sta-
tionary for a dynamic trajectory. Therefore

5]
(3/ (7 —w)dt=0 (A.23)
3l
or for convenience
5]
5 / W - TYdt =0 (A.24)
4

Substituting the expressions for % and 7 from Egs. (A.19) and (A.22) into Eq. (A.24) and using the ¢
operator, one obtains

6 oL
/ / {Elxy (w" —2ku’ — kzw) (SW" — 2k du — K 5w) + El,, (u" + 2kw — kzu) (51/’ +2kdW — K 5u)
1 0
— midit — mwdw}ldydr = 0 (A.25)

Integrating by parts gives
no L
/ / {ELiy (W" — 2ku" — I*W") dw + 2kELy (W" — 2k’ — k*W) Su — K ElLy (W' — 2k’ — k*w) dw
I 0
+ ELy (u"" 4 2kw” — Ku") Su — 2kEL (1" + 2kw' — K*u') dw — K’ El (1 + 2kw’ — Ku) du

L 5}
+ miidu + mwdw}dyds + / [—mi du — mWSw]Zdy + / [ELy (W — 2kt — K2w) W/
0 13

— Elyy (w’" — 2ku" — kzw’) dw + El; (u” + 2kw — kzu) du' — El, (u”’ + 2kw” — kzu’) du
— 2kElLvy (w” — 2ku’ — kzw) du + 2kEIL,, (u” + 2kw — kzu) Sw]édt =0 (A.26)

Since du and dw are completely arbitrary, the governing differential equations of motion in free vibration
follow from the above equation as

El; (u"" + 2w = 2K*u" = 2k3W + k4u) + 2kElvy (w"' — 2ku" — kzw') +mi=0 (A.27)

and
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Elyvy (w’”’ — 2ku" = 2k*wW" 4+ 2k + k4w) — 2kEI,, (u”’ + 2kw" — kzu/) +mw=0 (A.28)

From the natural boundary conditions, Eq. (A.26) gives the expressions for shear forces and bending
moments as (Note that the signs have been reversed because the sign of the Lagrangian in Eq. (A.23) was
reversed in Eq. (A.24))

Sy = El;(u" + 2kw" — ki) + kELy (W' — 2ku’ — k*w) (A.29)

S. = ELye(W" — 2k — W) — kEL; (u" + 2kw' — k*u) (A.30)

M, = —EL;y (W' — 2ku’ — k*w) (A.31)
and

M. = El;(u" + 2kw' — k*u) (A.32)
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